If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2+18x-6=0
a = 24; b = 18; c = -6;
Δ = b2-4ac
Δ = 182-4·24·(-6)
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-30}{2*24}=\frac{-48}{48} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+30}{2*24}=\frac{12}{48} =1/4 $
| 21x-17=11x+3 | | 6-8*x-3=-16+3*x-14 | | 26/13=48/x | | 1/2(2x+8)=6 | | 2w+5=2w+4 | | -2(5x+8)=44 | | x/4=35/10 | | |8x-9|=63 | | 2+5.3a=18.43 | | 4(-3x+5)=32 | | w^2-13w+8=0 | | 1x/5-11/3=4/3-3x/5 | | 2x^2-7+3x=0 | | (x-5)210=41790 | | 3/1=39/x | | 21x-17=11-x | | 10x-3/10-3x=3/5=-1/10 | | h/(-35.4)+84.3=-256.9 | | 11u=27+2u | | 4.5+3.2x=-15.7 | | H(-5)=2x+4 | | 2(4z−3−1)=166−46 | | -2.3x+2.1=11.5 | | 44/c=22/94 | | x/2-8=-32 | | 37-2x=15+9x | | 2/3h-1/3h+11=44 | | 2(1/2+c=12/3 | | h/3-7=-4 | | 3c+7=24;c=6 | | 8=(8+r)4 | | 11-5x=12+6x |